Products of Idempotent Endomorphisms of Relatively Free Algebras with Weak Exchange Properties
نویسندگان
چکیده
If A is a stable basis algebra of rank n, then the set Sn−1 of endomorphisms of rank at most n−1 is a subsemigroup of the endomorphism monoid of A. This paper gives a number of necessary and sufficient conditions for Sn−1 to be generated by idempotents. These conditions are satisfied by finitely generated free modules over Euclidean domains and by free left T -sets of finite rank where T is cancellative monoid in which every finitely generated left ideal is principal.
منابع مشابه
Endomorphisms of Relatively Free Algebras with Weak Exchange Properties
The structure of the endomorphism monoid of a stable basis algebra A is described. It is shown to be an abundant monoid; the subsemigroup of endomorphisms of finite rank has a regular semigroup of left quotients. This is a revised version of the article that appeared in Algebra Universalis 51 (2004), 257− −285. The authors are grateful to Professor George Bergman for correcting their original d...
متن کاملSTONE DUALITY FOR R0-ALGEBRAS WITH INTERNAL STATES
$Rsb{0}$-algebras, which were proved to be equivalent to Esteva and Godo's NM-algebras modelled by Fodor's nilpotent minimum t-norm, are the equivalent algebraic semantics of the left-continuous t-norm based fuzzy logic firstly introduced by Guo-jun Wang in the mid 1990s.In this paper, we first establish a Stone duality for the category of MV-skeletons of $Rsb{0}$-algebras and the category of t...
متن کاملProduct preservation and stable units for reflections into idempotent subvarieties
We give a necessary and sufficient condition for the preservation of finite products by a reflection of a variety of universal algebras into an idempotent subvariety. It is also shown that simple and semi-left-exact reflections into subvarieties of universal algebras are the same. It then follows that a reflection of a variety of universal algebras into an idempotent subvariety has stable units...
متن کاملQuasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions
We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...
متن کاملDerivations of UP-algebras by means of UP-endomorphisms
The notion of $f$-derivations of UP-algebras is introduced, some useful examples are discussed, and related properties are investigated. Moreover, we show that the fixed set and the kernel of $f$-derivations are UP-subalgebras of UP-algebras,and also give examples to show that the two sets are not UP-ideals of UP-algebras in general.
متن کامل